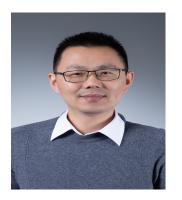


Identification of Linear Latent Hierarchical Structure

Feng Xie

Department of Applied Statistics, Beijing Technology and Business University fengxie@btbu.edu.cn

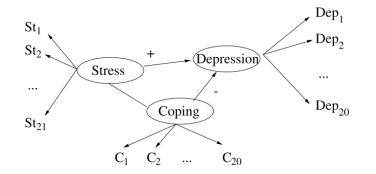
September 17, 2022, PCIC

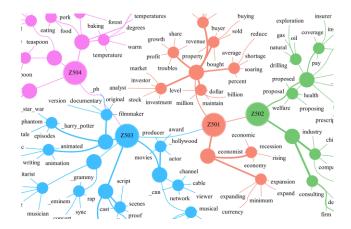

Acknowledgments

Biwei Huang

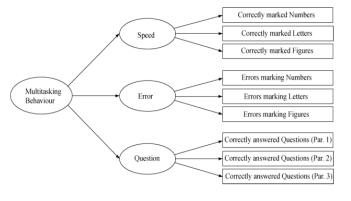
Zhengming Chen

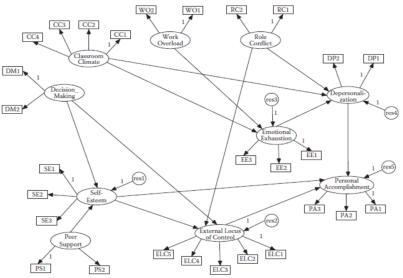
Yangbo He


Zhi Geng


Kun Zhang

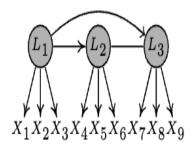
Introduction-Latent Causal Structure


Circle nodes are unobserved

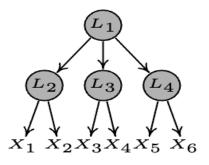

Stress coping model [Silva, JMLR'2006]

Topic model [Chen, AIJ'2017]

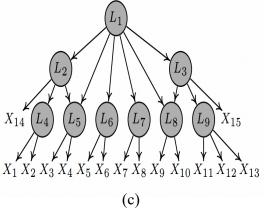
SIMKAP model [Himi, Cognition'2019]


Teacher's burnout model [Byrne, 2010]

Open Problem: How do we learn the underlying latent structure Only from observed variables?

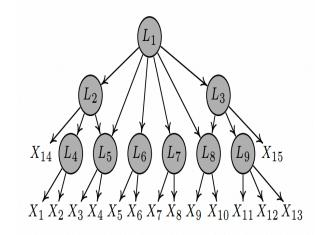

Related works

Measurement-based model: All latent variables have directed measured variables as children in the system [Bollen K A, 1989; Spirtes et al., 2000; Silva et al., JMLR'2006; ; Cui et al., UAI'2018; Shimizu et al., Neurocomputing2009; Kummerfeld and Ramsey, KDD'2016; Cai et al., NeruIPS'2019; Xie et al., NeruIPS'2020 Chen et al., AAAI'2022]...


□ Latent tree model: Each latent variables have at least three neighbors and there is only one path between every pair of variables in the system [Pear, 1988; Choi et al., JMLR'2011; Zhang, JMLR'2004; Poon et al., ICML'2010; Harmeling & Williams, TPAMI'2010; Mourad et al., JAIR'2013; Zhang & Poon, AAAI'2017; Etesami et al., Neural Computing'2016; Drton et al., Bernoulli'2017]....

(a) Measurement-based Structure

(b) Latent Tree Structure


Latent Hierarchical Structure

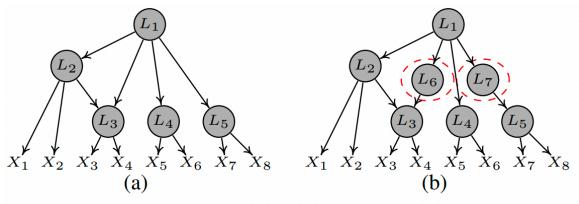
Problem Setup

[Linear Latent Hierarchical Structure Model] Let $X = \{X_1, ..., X_m\}$ denote the set of observed variables, and $L = \{L_1, ..., L_n\}$ denote the set of latent variables. All variables $V = X \cup L$ are generated according to a particular type of linear causal model:

$$X_i = \sum_{L_j \in P^a(X_i)} b_{ij} L_j + \varepsilon_{X_i}, \tag{1}$$

$$L_j = \sum_{L_k \in Pa(L_j)} c_{jk} L_k + \varepsilon_{L_j}, \qquad (2)$$

An example of latent hierarchical structure

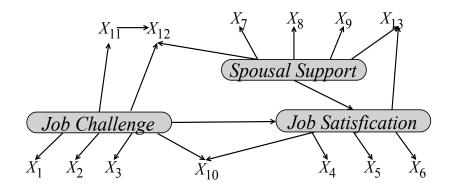

Find the sufficient conditions that render the causal structure of a latent hierarchical model identifiable!

Sufficient Conditions for Model Identification

Condition 1 [Non-Gaussianaity] All noise terms of variables V follow non-Gaussian distributions.

Condition 1 is essential to identify causal directions between any two variables.

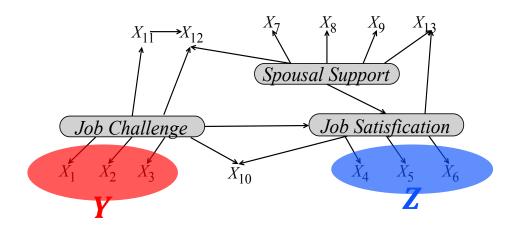
Condition 2 [Minimal Latent Hierarchical Structure] (1) each latent variable has at least three neighbors, and (2) each latent variable has at least two pure children.


(a) An example of the minimal latent hierarchical structure, (b) A counter-example of the minimal latent hierarchical structure.

Condition 2 ensures that the structure among latent variables does not include any "redundant" latent nodes.

GIN condition-Testing "d-separation" in latent variable model

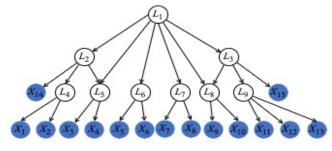
DEF[Generalized Independent Noise(GIN), condition, Xie et al., 2020] (*Z*, *Y*) follows the GIN condition iff there exists non-zeros ω such that $\omega^T Y$ is independent from *Z*, where $\omega^T \mathbb{E}[YZ^T] = 0$.


Graphical criterion: If (Z, Y) follows the GIN condition, there is an exogenous subset of the common cause of Y to *d-separate* from Y from Z.

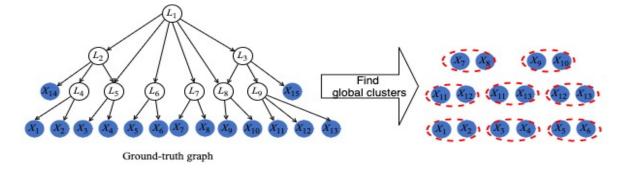
GIN condition-Testing "d-separation" in latent variable model

DEF[Generalized Independent Noise(GIN), condition, Xie et al., 2020] (*Z*, *Y*) follows the GIN condition iff there exists non-zeros ω such that $\omega^T Y$ is independent from *Z*, where $\omega^T \mathbb{E}[YZ^T] = 0$.

Graphical criterion: If (Z, Y) follows the GIN condition, there is an exogenous subset of the common cause of Y to *d-separate* from Y from Z.


 $\begin{array}{ccc} & & & \\ \hline X_4, X_5, X_6\}, \{X_1, X_2, X_3\} \end{array} \text{ follows GIN condition, then the exogenous subset of the common cause of } \{X_1, X_2, X_3\}, \text{ i.e., } \textit{Job Challenge d-separates } \{X_1, X_2, X_3\} \text{ from } \{X_4, X_5, X_6\}_{\circ} \end{array}$

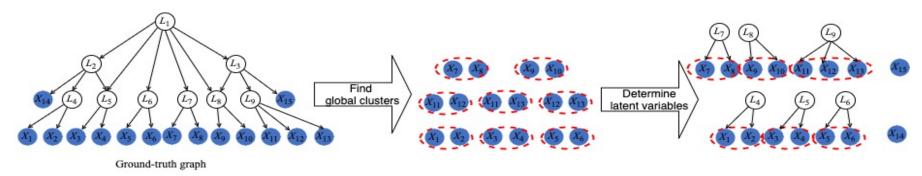
F. Xie, R. Cai, B. Huang, C. Glymour, Z. Hao, and K. Zhang. Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurIPS 2020.


Model Estimation

- Step 1-Locate all latent variables
 - P1. Identify **causal clusters** from the active variable set
 - P2. Determine the number of **new latent variables** that need to be introduced for these clusters
 - P3. Update the active variable set
- Step 2-Infer the causal structure among the identified latent variables
 - P1. identify the **causal order** among latent variables
 - P2. remove **redundant** edges

Notice that the number of latent variables and the level of the structure are unknown!

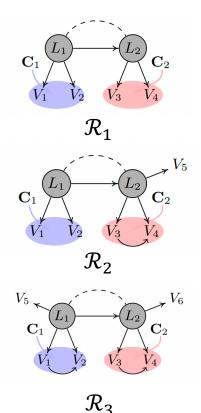
Ground-truth graph

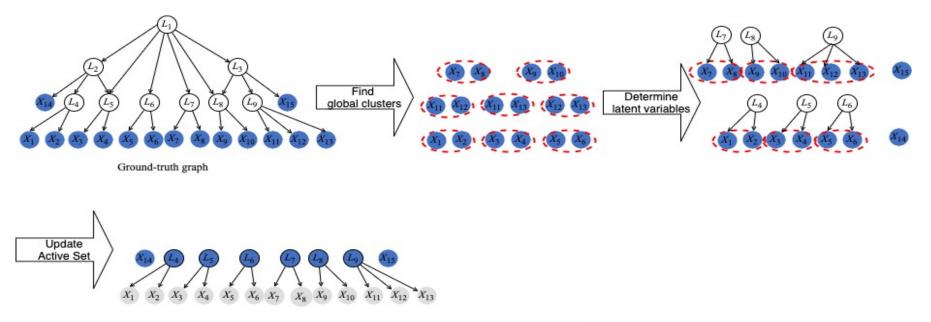


Proposition 1 (Identifying Global Causal Clusters). Let \mathcal{A} be the active variable set and \mathbf{Y} be a proper subset of \mathcal{A} . Then \mathbf{Y} is a global causal cluster if and only if the following two conditions hold: 1) for any subset $\tilde{\mathbf{Y}}$ of \mathbf{Y} with $|\tilde{\mathbf{Y}}| = 2$, $(\mathcal{A} \setminus \mathbf{Y}, \tilde{\mathbf{Y}})$ follows the GIN condition, and 2) no proper subset of \mathbf{Y} satisfies condition 1).

E.g., $\mathbf{Y} = \{X_1, X_2\}$, we have $(\mathbf{X} \setminus \{X_1, X_2\}, \{X_1, X_2\})$ follows GIN condition.

Implies

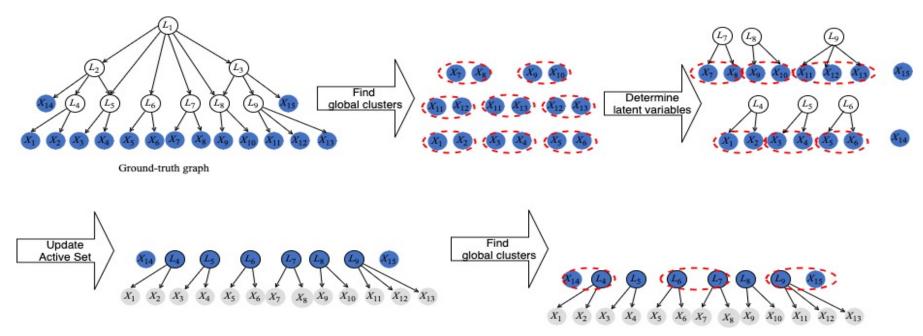

 $\{X_1, X_2\}$ is a global cluster!

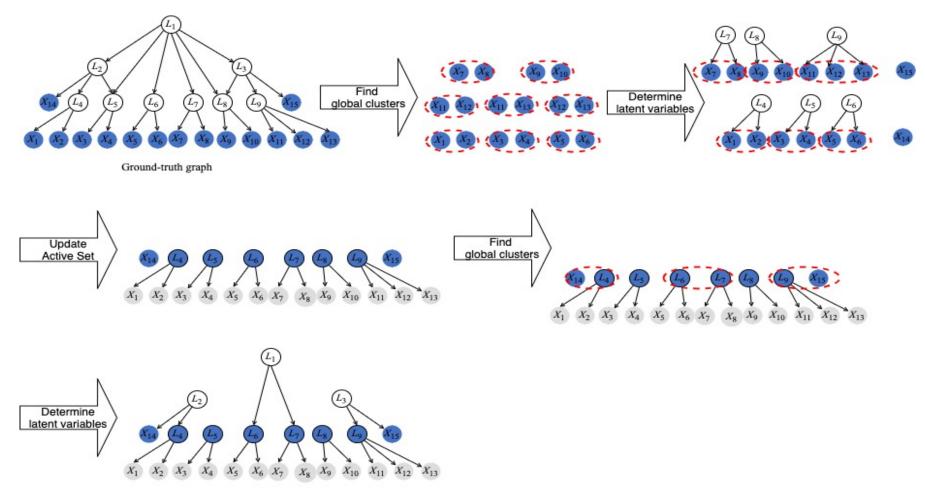


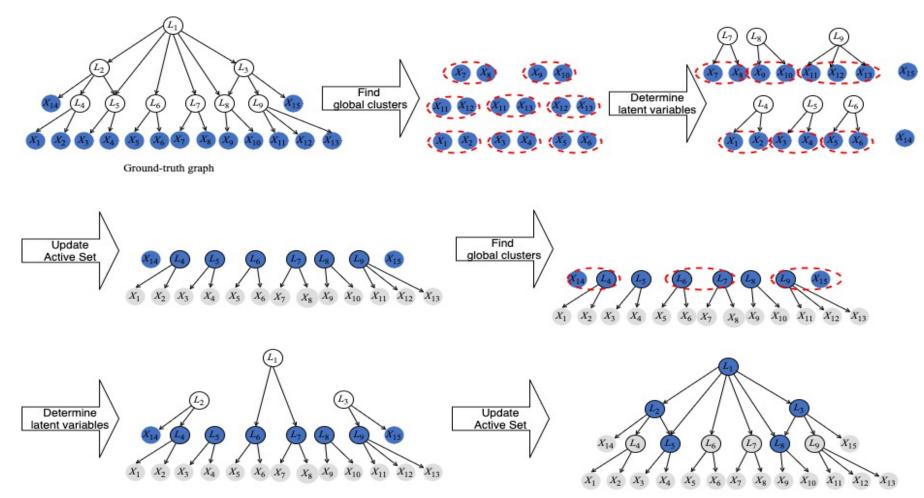
Proposition 2 (Merging Rules). Let \mathcal{A} be the active variable set and C_1 and C_2 be two global causal clusters. C_1 and C_2 share the common latent parent, if one of the following rules holds.

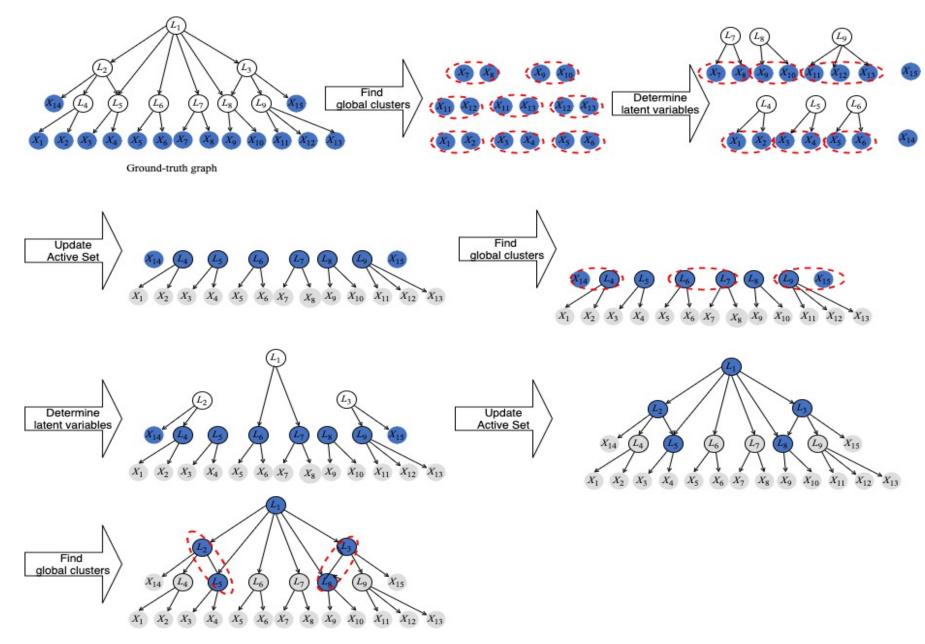
- $\mathcal{R}1.$ 1) \mathbf{C}_1 and \mathbf{C}_2 are both pure clusters, and 2) for any subset $\tilde{\mathbf{C}} \subseteq \mathbf{C}_1 \cup \mathbf{C}_2$ with $|\tilde{\mathbf{C}}| = 2$, $(\mathcal{A} \setminus \tilde{\mathbf{C}}, \tilde{\mathbf{C}})$ follows the GIN condition.
- R2. 1) One of the clusters is a pure cluster and the other is not, e.g., \mathbf{C}_1 is pure and \mathbf{C}_2 is impure, and 2) for any variable $V_i \in \mathbf{C}_1$ and any variable $V_j \in \mathbf{C}_2$, $(\mathcal{A} \setminus \{\mathbf{C}_2, V_i\}, \{V_i, V_j\})$ follows the GIN condition.
- R3. 1) \mathbf{C}_1 and \mathbf{C}_2 both are impure clusters, and 2) for any subset $\tilde{\mathbf{C}} \subseteq \mathbf{C}_1 \cup \mathbf{C}_2$ with $|\tilde{\mathbf{C}}| = 2$, $(\mathcal{A} \setminus \{\mathbf{C}_1 \cup \mathbf{C}_2\}, \tilde{\mathbf{C}})$ follows the GIN condition.

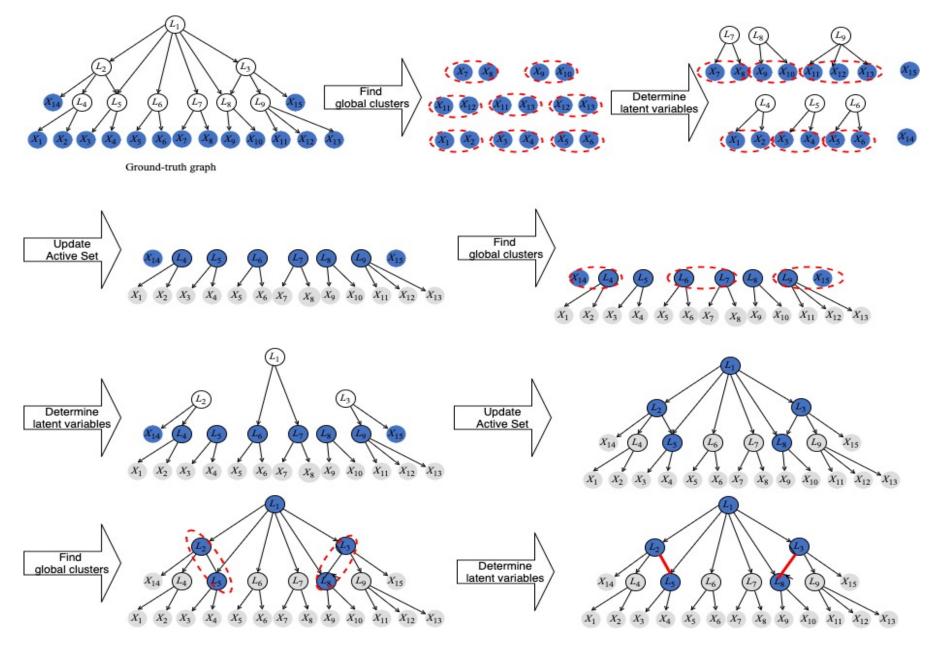
Otherwise, C_1 and C_2 do not share the common latent parent.

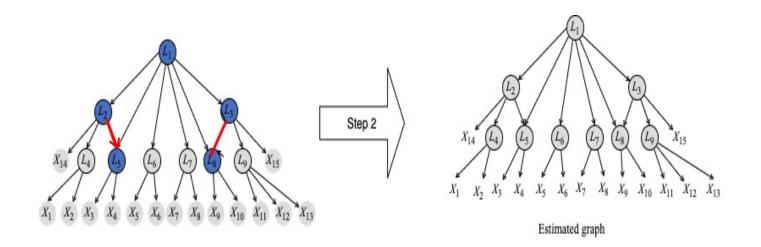


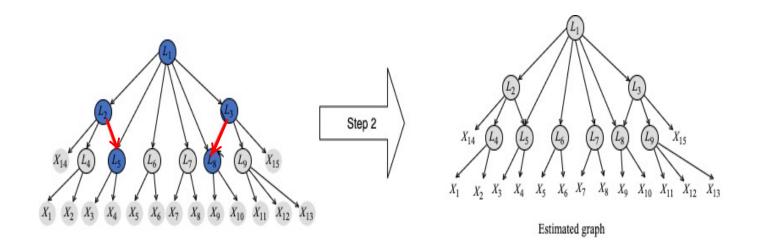

Proposition 3 (Active Variable Set Update). Let \mathcal{A} be the current active variable set and \mathcal{L} be the latent variable sets discovered in the current iteration. Then the new active variable set $\mathcal{A}' = \mathcal{A} \cup \mathcal{L} \setminus Ch(\mathcal{L})$. Moreover, the GIN conditions over variables in \mathcal{A}' are equivalent to those that replace $V \in \mathcal{A}'$ by any variable in its corresponding cluster identified in the latest iteration.


E.g., $(X \setminus \{X_1, X_2\}, \{L_4, X_{14}\})$ follows GIN condition.




 $(\mathbf{X} \setminus \{X_1, X_2\}, \{X_1, X_{14}\})$ follows GIN condition.





 $({L_2, L_7}, {L_2, L_5, L_6})$ follows GIN condition while $({L_5, L_7}, {L_2, L_5, L_6})$ violates GIN condition.

$$\begin{array}{c}
 Imply \\
 L_2 > L_5
\end{array}$$

 $({L_3, L_7}, {L_3, L_8, L_6})$ follows GIN condition while $({L_8, L_7}, {L_3, L_8, L_6})$ violates GIN condition.

$$\begin{array}{c}
\text{Imply} \\
L_3 \succ L_8
\end{array}$$

Identification Result

Theorem 1 (Identifiability of Latent Hierarchical Structure). Suppose that the input data \mathbf{X} follows LiNGLaH with the minimal latent hierarchical structure. Then the underlying causal graph \mathcal{G} is fully identifiable with LaHME, including latent variables and their causal relationships.

The latent hierarchical structure is identifiable under assumptions of non-Gaussianity and minimal latent hierarchical structure.

Simulation Results

- 4 cases, with different latent structures, including measurement-based
 (Case 1~2) and tree-based (Case 3) structures
- Can we recover the ground-truth structure, including causal direction?
 - Structure Recovery Error Rate: measure falsely recovered the graph
 - Error in Hidden Variable: measure omitted latent variables
 - Correct Ordering Rate: measure the correction of the causal directions

	1		UIUI	manee		(11VIL), (י ז, זונ	or c, Di					carining		iviar	incar s	uuuu	10.	
	Structure Recovery Error Rate \downarrow						Error in Hidden Variables↓						Correct-Ordering Rate ↑						
Algori	thm	LaHME	GIN	FOFC	BPC	CLRG	CLNJ	LaHME	GIN	FOFC	BPC	CLRG	CLNJ	LaHME	GIN	FOFC	BPC	CLRG	CLNJ
	1k	0.1	0.2	1.0	1.0	1.0	1.0	0.1	0.1	0.5	0.6	2.0	2.0	0.96	0.92	-	-	-	-
Case 1	5k	0.0	0.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.1	2.0	2.0	1.0	1.0	-	-	-	-
	10k	0.0	0.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	2.0	2.0	1.0	1.0	-	-	-	-
	1k	0.2	1.0	1.0	1.0	1.0	1.0	0.2	3.2	3.8	3.9	4.0	4.0	0.9	0.08	-	-	-	-
Case 2	5k	0.1	1.0	1.0	1.0	1.0	1.0	0.1	3.0	3.6	3.8	4.0	4.0	0.96	0.1	-	-	-	-
	10k	0.0	1.0	1.0	1.0	1.0	1.0	0.0	3.0	3.5	3.8	4.0	4.0	1.0	0.1	-	-	-	-
	1k	0.1	1.0	1.0	1.0	1.0	1.0	0.2	1.3	3.0	3.1	3.0	3.0	0.92	0.0	-	-	-	-
Case 3	5k	0.0	1.0	1.0	1.0	1.0	1.0	0.0	1.2	3.0	3.2	3.0	3.0	1.0	0.0	-	-	-	-
	10k	0.0	1.0	1.0	1.0	1.0	1.0	0.0	1.0	3.2	3.4	3.0	3.0	1.0	0.0	-	-	-	-
	1k	0.3	1.0	1.0	1.0	1.0	1.0	0.4	3.4	7.0	7.2	8.0	8.0	0.9	0.0	-	-	-	-
Case 4	5k	0.2	1.0	1.0	1.0	1.0	1.0	0.2	3.2	6.6	6.9	8.0	8.0	0.94	0.0	-	-	-	-
	10k	0.0	1.0	1.0	1.0	1.0	1.0	0.0	3.1	5.8	6.7	8.0	8.0	1.0	0.0	-	-	-	-

Table 1. Performance of LaHME, GIN, FOFC, BPC, CLRG and CLNJ on learning latent hierarchical structure.

Simulation Results

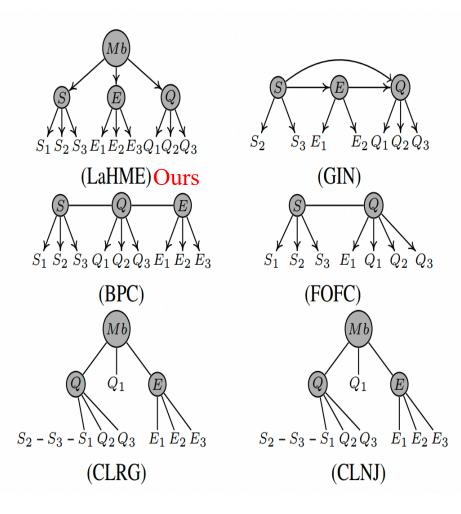
- 4 cases, with different latent structures, including measurement-based
 (Case 1~2) and tree-based (Case 3) structures
- Can we recover the ground-truth structure, including causal direction?
 - Structure Recovery Error Rate: measure falsely recovered the graph
 - Error in Hidden Variable: measure omitted latent variables
 - Correct Ordering Rate: measure the correction of the causal directions

	1					,	JII 1, I 1	$\mathbf{OIC}, \mathbf{DI}$					Juimi	<u>s ratent n</u>					
		Structure Recovery Error Rate \downarrow						Error	Error in Hidden Variables Correct-Ordering Rate								ate ↑		
Algori	thm	LaHME	GIN	FOFC	BPC	CLRG	CLNJ	LaHME	GIN	FOFC	BPC	CLRG	CLNJ	LaHME	GIN	FOFC	BPC	CLRG	CLNJ
	1k	0.1	0.2	1.0	1.0	1.0	1.0	0.1	0.1	0.5	0.6	2.0	2.0	0.96	0.92	-	-	-	-
Case 1	5k	0.0	0.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.1	2.0	2.0	1.0	1.0	-	-	-	-
	10k	0.0	0.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	2.0	2.0	1.0	1.0	-	-	-	-
	1k	0.2	1.0	1.0	1.0	1.0	1.0	0.2	3.2	3.8	3.9	4.0	4.0	0.9	0.08	-	-	-	-
Case 2	5k	0.1	1.0	1.0	1.0	1.0	1.0	0.1	3.0	3.6	3.8	4.0	4.0	0.96	0.1	-	-	-	-
	10k	0.0	1.0	1.0	1.0	1.0	1.0	0.0	3.0	3.5	3.8	4.0	4.0	1.0	0.1	-	-	-	-
	1k	0.1	1.0	1.0	1.0	1.0	1.0	0.2	1.3	3.0	3.1	3.0	3.0	0 0.92 0.0 -	-	-	-		
Case 3	5k	0.0	1.0	1.0	1.0	1.0	1.0	0.0	1.2	3.0	3.2	3.0	3.0	1.0	0.0	-	-	-	-
	10k	0.0	1.0	1.0	1.0	1.0	1.0	0.0	1.0	3.2	3.4	3.0	3.0	1.0	0.0	-	-	-	-
	1k	0.3	1.0	1.0	1.0	1.0	1.0	0.4	3.4	7.0	7.2	8.0	8.0	0.9	0.0	-	-	-	-
Case 4	5k	0.2	1.0	1.0	1.0	1.0	1.0	0.2	3.2	6.6	6.9	8.0	8.0	0.94	0.0	-	-	-	-
	10k	0.0	1.0	1.0	1.0	1.0	1.0	0.0	3.1	5.8	6.7	8.0	8.0	1.0	0.0	-	-	-	-
					1991 NA 1991 NA 1991 NA						100000000000000000000000000000000000000								

Table 1. Performance of LaHME, GIN, FOFC, BPC, CLRG and CLNJ on learning latent hierarchical structure.

Ours

Ours

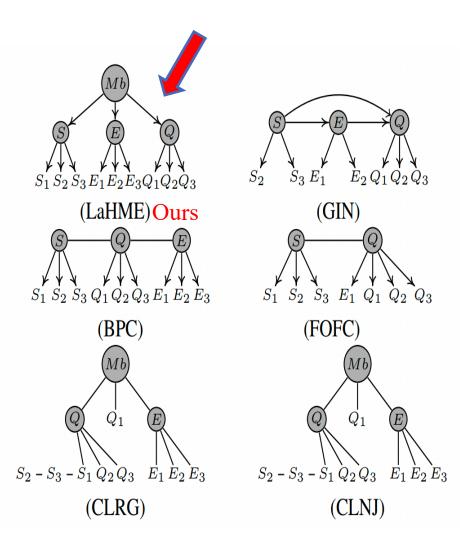

Ours

Application to multitasking behavior Data

• The data set consists of 202 samples

Latent Factors	Children (Indicators)
Speed (S)	Correctly marked Numbers (S1), Correctly marked Latters (S2), and Correctly marked Figures (S3)
Error (E)	Errors marking Numbers (E1), Errors marking Latters (E2), and Errors marking Figures (E3)
Question (Q)	Correctly answered Questions Par.1 (Q1), Correctly answered Questions Par.2 (Q2), and Correctly answered Questions Par.3 (Q3)
Multitasking be- havior (Mb)	Speed, Error, and Question

• Consistent with the hypothesized model given in Himi et al., 2019



Application to multitasking behavior Data

• The data set consists of 202 samples

Latent Factors	Children (Indicators)
Speed (S)	Correctly marked Numbers (S1), Correctly marked Latters (S2), and Correctly marked Figures (S3)
Error (E)	Errors marking Numbers (E1), Errors marking Latters (E2), and Errors marking Figures (E3)
Question (Q)	Correctly answered Questions Par.1 (Q1), Cor- rectly answered Questions Par.2 (Q2), and Correctly answered Questions Par.3 (Q3)
Multitasking be- havior (Mb)	Speed, Error, and Question

• Consistent with the hypothesized model given in Himi et al., 2019

Conclusion

- Essential to learn linear latent hierarchical structure
- Provide sufficient conditions for structural identifiability
- Future work: n-factor model, nonlinear hierarchical structure...

Thank you for your attention!